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Notation

I x is a scalar
I x is a column vector
I X is a matrix
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Gaussian Processes
For Machine Learning

Definition
A Gaussian process is a collection of random variables any finite number
of which is jointly Gaussian.

A Gaussian process f (x) is denoted by:

f (x) ∼ GP(m(x), k(x, x′))

Where m(x) is a mean function and k(x, x′) is the covariance function or
kernel, encoding our belief about the functional form of f (x).
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Gaussian Processes
The Covariance Function

Definition
A covariance function is a function that describes covariance of a random
process.

A covariance function is a symmetric and positive semi-definite kernel:

k : X × X → R

Example
I Linear: kLin(x, x′) =

∑D
d=1 σ

2
dxdx ′d

I Squared Exponential: kSE (x, x′) = σ2 exp(−‖x−x′‖2
2

2l2 )
I Periodic: kPer (x, x′) = σ2 exp(− sin2(b‖x−x′‖)

2l2 )
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Gaussian Processes
For Machine Learning

Given a set of training input-output pairs (xi , yi ) for i ∈ {1, . . . ,N}, where
xi ’s are arranged in a design matrix X and yi ’s arranged in a column
vector y. We can model the relationship between the inputs and outputs
as follows:

yi = f (xi ) + ε, ε ∼ N (0, σ2
ε )

Where f is an unobserved, latent function.

5 / 18



Gaussian Processes
For Machine Learning

We can set a Gaussian process prior on the latent function f :

f (x) ∼ GP(0, k(x, x′))

Using Bayes’ rule, we can obtain the posterior of f on a test input x∗ as
follows:

p(f (x∗)|D, x∗,θ) = N (f̄∗, cov(f∗))

Where,

f̄∗ = k(x∗,X)T [K(X,X) + σ2
ε I]−1y

cov(f∗) = k(x∗, x∗)− k(x∗,X)T [K(X,X) + σ2
ε I]−1k(x∗,X)
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Gaussian Processes
For Machine Learning

To completely specify a Gaussian process f , we need to determine the
values of the hyper-parameters (kernel parameters) θ. This can be easily
done by type-II maximum likelihood, i.e. maximising the marginal
likelihood (aka evidence). The log-marginal likelihood is given by:

log p(y|X,θ) = −1
2yT [K(X,X)+σ2

ε I]−1y−1
2 log |K(X,X)+σ2

ε I|−n
2 log(2π)

One can easily use off-the-shelf optimisation packages to find the value of
θ that maximises the marginal likelihood.
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Multitask Learning
An Introduction

Definition
Multitask learning is a machine learning framework where ones learns two
or more tasks that share the same domain (input feature space)
simultaneously.

The principal aim of Multitask learning is to improve the generalisation
ability of the learner by leveraging domain-specific information contained
in the training signals of related tasks.
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Multitask Learning
Cases

I Isotopic case where all tasks share the same set of training inputs.
I Hetrotopic case where each task is associated with a different set of

training inputs.
I Partially Hetrotopic case where tasks share some training inputs.
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Gaussian Processes
For Machine Learning

Given a set of training input-output pairs (xi , yi ) for i ∈ {1, . . . ,N} and
yi ∈ RD. xi ’s are arranged in a design matrix X and yi’s arranged in an
N × D matrix Y. We can model the relationship between the inputs and
outputs as follows:

yi = f(xi ) + ε, ε ∼ N (0,Dε)

Where f is an unobserved, vector-valued, latent function;
f = (f1, . . . , fD)T .
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Gaussian Processes
For Machine Learning

Setting a Gaussian process prior on f can be done by assuming that each
element fd of (f1, . . . , fD)T is a different random process where:

cov(fd (x), fd ′(x′)) = k((x; d), (x′; d ′))

To make notation simpler we can write:

k((x; d), (x′; d ′)) = kd ,d ′(x, x′)
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Gaussian Processes
For Machine Learning

To set a Gaussian process prior on the latent function f, we write:

f(x) ∼ GP(0, kd ,d ′(x, x′))

Using Bayes’ rule, we can obtain the posterior of f on a test input x∗ as
follows:

p(f(x∗)|D, x∗,θ) = N (f̄∗, cov(f∗))

Where,

f̄∗ = K(x∗,X)T [K(X,X) + Σ]−1vec(Y)
cov(f∗) = K(x∗, x∗)−K(x∗,X)T [K(X,X) + Σ]−1K(x∗,X)

12 / 18



Seperable Kernels
Introduction

We consider kernels of the form:

kd ,d ′(x, x′) = kT (d , d ′)k(x, x′)

We can also write this as a matrix expression:

K(x, x′) = k(x, x′)B

Where B is a D × D symmetric and positive semi-definite matrix.
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Seperable Kernels
Simplest Case

We consider the simplest case of the previous formulation, where B = I:

kT (d , d ′) = δd ,d ′

Where δ is the Kronecker delta. This formulation corresponds to a Gram
matrix that is block diagonal. This means that the D outputs are
uncorrelated; however, they still share the kernel parameters.
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Seperable Kernels
Intrinsic Coregionalisation Model

In ICM, we assume B is a free form D × D symmetric and positive
semi-definite matrix. In this case:

kT (d , d ′) = bd ,d ′

Where bd ,d ′ is the element in the dth row and d ′th column of B. This
formulation corresponds to a Gram matrix that is block symmetric. This
means that the D outputs are correlated and the cross-covariance between
the dth and the d ′th outputs is given by bd ,d ′ .
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Seperable Kernels
Linear Model of Coregionalisation

LMC is a generalised case of IMC, in LMC we write the covariance as:

K(x, x′) =
Q∑

q=1
Bqkq(x, x′)

Where Bq’s are known as coregionalisation matrices.
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Seperable Kernels
Notes

I In the isotropic case, the Gram matrix K can be written as a
factorisation using the Kronecker product, i.e. K̃ = B

⊗
K(X,X).

I B can be reparametrised in different ways e.g. PPCA where
B = WT W + D, or Cholesky decomposition where B = LT L. This
can be important to insure numerical stability.
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